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Figure 1: Co-orchestration technology ecosystem for dynamic transition.

ABSTRACT
Enabling students to dynamically transition between individual
and collaborative learning activities has great potential to support
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better learning. We explore how technology can support teach-
ers in orchestrating dynamic transitions during class. Working
with five teachers and 199 students over 22 class sessions, we con-
ducted classroom-based prototyping of a co-orchestration tech-
nology ecosystem that supports the dynamic pairing of students
working with intelligent tutoring systems. Using mixed-methods
data analysis, we study the resulting observed classroom dynamics,
and how teachers and students perceived and experienced dynamic
transitions as supported by our technology. We discover a potential
tension between teachers’ and students’ preferred level of control:
students prefer a degree of control over the dynamic transitions that
teachers are hesitant to grant. Our study reveals design implications
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and challenges for future human-AI co-orchestration in classroom
use, bringing us closer to realizing the vision of highly-personalized
smart classrooms that address the unique needs of each student.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Applied computing→ Interactive learning environments.
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1 INTRODUCTION
Classroom teaching is a dynamic and complex job: it can require
teachers to improvise to deliver the most effective instructional
support for students at any given moment. Teachers need to contin-
uously observe each learner’s current state to flexibly decide how,
when and who to support [5, 26, 48]. When multiple students need
help simultaneously, a teacher may be unable to attend to their re-
quests and learning needs. Prior classroom observations found that
in such moments, teachers may team students up opportunistically,
so that students can get help from their peers [21, 22]. We refer to
such events as dynamic transitions between individual and collab-
orative learning. Dynamic transitions go beyond the pre-planned
team formation strategies that are common in classrooms, where
most or all students start or stop collaboration at the same time. In
dynamic transitions, by contrast, teachers have students transition
between learning modes (individual or collaborative) when the need
arises, to be maximally responsive to the fact that students learn at
their own pace. A teacher thus needs to gauge which students need
help, identify suitable partners for these students, and monitor their
collaboration to decide when it should end (i.e., when the students
should revert back to individual learning). It is not an easy task to
manage such dynamic transitions, especially since teachers may
need to simultaneously teach, support other students, and attend
to unexpected classroom behaviors [21, 22].

The current study prototypes a technology ecosystem that lever-
ages both human and AI system strengths in classroom manage-
ment. Various educational tools have been designed and developed
to support teaching and learning processes mediated by technology
[5, 27]. Some of these tools support classroom orchestration, which
broadly refers to planning, monitoring and real-time management
of complex classroom activities [17, 22]. Dillenbourg pointed out
[16] that orchestration considers interactions at the level of the
broader learning ecosystem, such as a classroom with one or more
instructors and groups of learners [25]. At the intersection of edu-
cation and HCI, there is an emerging emphasis on designing tools
from a human-AI co-orchestration standpoint, which emphasizes

the collaboration and shared control of orchestration responsibility
between classroom stakeholders (usually instructor and students),
and the AI system [19, 25, 43]. The lens of co-orchestration is im-
portant: although assistance from an AI system with managing
classroom activities is useful, instructors and students generally
like to preserve some level of control over what happens [18, 19, 55].
Adopting the human-AI co-orchestration lens, we created a tech-
nology ecosystem with the aim of allowing students to transition
dynamically between individual and collaborative learning in a
self-paced way. Our technology ecosystem shares orchestration
control with human instructors, in that an AI system recommends
students’ pairings to teachers, and teachers have control over the
final orchestration decisions.

Dynamically combining individual and collaborative learning
has pedagogical potential, but has yet to be investigated in authen-
tic classrooms. In educational practice, combining individual and
collaborative learning activities is very common (e.g., Think-Pair-
Share [30] and Jigsaw [6]). From a learning science perspective,
individual and collaborative learning each have their own benefits.
From the point of view of the Knowledge Learning Instruction
(KLI) framework [29], collaborative learning offers opportunities
for mutual elaboration and co-construction of knowledge, whereas
individual learning may promote induction and refinement as learn-
ing mechanisms (cf. [29, 41]). Previous work by Olsen et al. has
shown that combining individual and collaborative learning may
yield more effective learning for students than either mode alone
[42]. Despite some emerging research on transitioning dynamically
between individual and collaborative learning modes [18, 43], there
has not yet been a study that empirically prototypes such processes
in the classroom, supported by technology that teachers can use
independently without much human assistance.

In this work, we conducted a classroom-based prototyping study
of dynamic transitions. We have implemented a co-orchestration
technology ecosystem consisting of intelligent tutoring systems
that support individual and collaborative learning, and a novel
teacher-facing co-orchestration tool named Pair-Up. This tool sup-
ports human-AI co-orchestration of students’ dynamic transitions
between individual and collaborative learning activities. It sup-
ports teacher awareness of students’ learning status by displaying
real-time learning analytics. It also provides pairing suggestions
to assist teachers with decision-making, but preserves space for
teacher agency (i.e., teachers can flexibly override system-suggested
pairings). We conducted a classroom prototyping study with five
teachers and 199 middle-school students. The overall goal of the
prototyping study was to understand the feasibility and desirability
of dynamically combining individual and collaborative learning in
K-12 classes and to get an initial sense of whether the human-AI co-
orchestration technology ecosystem is up to the task. We performed
mixed-methods analyses of user transaction log data collected from
the technology ecosystem, as well as teacher interview and student
survey data.

As discussed next, the current study contributes to HCI research
by investigating 1) teachers’ orchestration of dynamic transitions
and students’ learning processes with dynamic transitions, 2) class-
room stakeholders’ perceived value of dynamic transitions sup-
ported by a co-orchestration technology ecosystem, and 3) de-
sign opportunities and challenges for future tools that support
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dynamic transitions. Through this prototyping study, we combine
and extend two strands of prior work, respectively, in human-AI
co-orchestration and dynamically combining individual and collabo-
rative learning.

2 RELATEDWORK
2.1 Human-AI Co-Orchestration in Classroom
Classroom orchestration broadly refers to planning, monitoring and
real-time management of complex classroom activities [17, 22]. In-
stead of instructors taking the sole responsibility to leverage the
complementary strength of humans and AI, it may be beneficial if
classroom activities could be co-orchestrated by human and AI sys-
tems [46]. Human-AI co-orchestration is a specific form of human-AI
interaction where the humans involved are classroom stakeholders.
It refers to educational technology where the orchestration respon-
sibilities might be distributed between (1) instructors and learners,
(2) instructors and AI-based instructional agents, or (3) instructors,
learners, and AI agents [25]. This distribution of responsibilities
may occur via role splitting, in which humans and AI agents each
take on different roles and tasks within an instructional scenario,
or via role sharing, in which humans and AI agents play analogous
roles and contribute to the same orchestration tasks [25].

Some existing human-AI co-orchestration technologies guide
instructors’ attention to learners most in need of human atten-
tion, while delegating support for other students to AI agents (e.g.,
[20, 35]). For example, the FACT orchestration system alerts teach-
ers to students who need help, and recommends whom to help and
with what. It also suggests instructional responses that teachers
can broadcast to a particular group or to the entire class [49]. FACT,
while exemplifying co-orchestration, focuses on teacher monitor-
ing and guiding collaboration, instead of transitioning between
activities dynamically as in our work.

An emerging vision of human-AI co-orchestration, as outlined by
Holstein and Olsen [25], is to combine instructor-AI and instructor-
learner co-orchestration, and share orchestration responsibilities
across instructors, learners, and AI. While some initial work has
been done in this direction (e.g., [18, 39]), more work is needed to
better understand how such shared control can best be designed and
function. Without careful design, sharing responsibility between
instructors and learners may risk creating a greater load for the
instructor, given that learners are often still learning how to take
on these responsibilities [25].

Closest to our work, Echeverria et al. conducted a technology
probe study in classrooms to gain insight into how teachers, stu-
dents, and an AI system might co-orchestrate the transitioning
between individual and collaborative learning. They explored three
ways of distributing control between humans on the AI system:
teaming up students based on choices made by students, teachers
and the AI system, respectively [18]. They identified a need for
hybrid control between students, teachers and AI systems, and
adaptivity and/or adaptability for different classroom contexts (e.g.,
teachers’ preference and students’ prior knowledge). One difference
is that this prior study explored student control, which we do not
do in the current study. Another key difference is that in this prior
technology-probe study, the pairing actions were performed in a
Wizard-of-Oz approach: an additional person played the role of

system behind-the-scenes and performed the pairing and, in the
system-controlled condition, decided whom to pair up. While the
Wizard-of-OZ study gave valuable insights into the needs and de-
sires of shared control in an authentic classroom setting, the current
study goes beyond the Wizard-of-Oz study in that the technology
ecosystem was fully implemented (i.e., no Wizard was needed). In
the current work, the co-orchestration technology shares control
with human instructors, in that the AI system recommends stu-
dents’ pairings to teachers, and teachers have control over the final
orchestration decisions.

2.2 Dynamic Social Transitions for Personalized
Learning

Dynamic transitions between individual and collaborative learning
have several potential benefits. First, they may achieve more person-
alized and differentiated learning. Given each learner is unique in
their needs, abilities, and learning pace [54], switching learners to
learning activities most suitable for them in the given moment may
yield better learning. A second potential benefit of dynamic transi-
tions is that they can leverage the complementary benefits of two
learning modes. Collaborative learning supports mutual elabora-
tion and co-construction of knowledge, whereas individual learning
may promote induction and refinement as learning mechanisms (cf.
[17, 20]). Additionally, research showed that combining individual
and collaborative learning may be more effective than either mode
alone. Students who engaged in a combination of individual and
collaborative learning had higher learning gains, made fewer errors
and asked for fewer hints, compared to students who exclusively
worked individually or exclusively worked collaboratively [42].

Prior research has also studied social transitions between class-
room activities [18, 43, 47]. Multiple social levels often occur in
a classroom, in that teachers may assign students to work alone,
in pairs, in large groups, or in the whole class [43]. Fluid social
transitions, as defined by Olsen et al. [43], are those that occur
asynchronously between students - not all at the same time for
everyone in the class. Dynamic transitions in our context are one
form of fluid social transitions, specifically, between individual and
collaborative learning activities. Without technological support,
managing such transitions is difficult for teachers, as they need to
monitor the real-time progress of students, decide whom to team up,
determine the optimal time point for transitioning, decide what the
teamed-up students should work on, and actualize the transitions
(e.g., let the students know what they should do). In the field of HCI
and education, many of today’s tools are specifically designed for
supporting a single social level [43], focusing exclusively on individ-
ual learning [20], collaborative learning [1, 15, 38], or whole-class
learning [45]. Tools that do support multiple social levels generally
have limited support for smooth transitions between these levels
[43]. Systems that do facilitate transitions, however, often provide
support that is related to the timing of activities (e.g., a timer in
the system) [24, 34, 36], leaving the majority of the orchestration
load for the teachers [43]. Thus, educational technology tools today,
to the best of our knowledge, provide limited support for fluid,
dynamic transitions between individual and collaborative learning,
a gap that our work aims to bridge.
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3 RESEARCH QUESTIONS
Building on the idea of fluid social transitions [43], we define
dynamic transitions as having three components 1) monitoring
students’ learning skills, status, and progress, 2) having students
transition when the need arises (e.g., when a student is no longer
progressing productively in one mode of learning); and 3) pairing
up students in ways that are not fully pre-planned. We developed
a co-orchestration technology ecosystem that supports dynamic
transitions and tested it in a classroom-based prototyping study.
Our study aims to answer the following research questions:

(1) Observed classroom dynamics in classes with dynamic tran-
sitions between individual and collaborative learning
RQ1 What are students’ learning processes?
RQ2 What are teachers’ orchestration processes and pairing

strategies?
(2) Students’ and teachers’ perceptions of dynamic transitions

between individual and collaborative learning
RQ3 Do teachers and students see value in dynamic transi-

tions?
RQ4 What design opportunities do they see for future tools

that might better support dynamic transitions?
Given the exploratory nature of the study, we do not formulate

specific hypotheses related to these research questions.

4 METHODS
The technology ecosystem used in the study comprises three com-
ponents: an individual tutoring system, a collaborative learning
system that supports peer tutoring, and Pair-Up, a teacher-facing
orchestration tool.

The first component is an AI-based tutoring system Lynnette (Fig.
1, (a) and Fig. 2 ) that supports individual learning. This system pro-
vides step-by-step guidance as a student practices equation-solving
individually, in the form of adaptive hints and feedback [33]. The
second component is an AI-based tutoring system that supports
peer tutoring, which is a re-implementation of Erin Walker’s adap-
tive peer tutoring system (APTA) [51]. It supports two students as
they practice solving equations collaboratively (Fig. 1 , (c) and Fig.
3), with one student in the role of Solver and one in the role of
Tutor. Whereas the tutoring system for individual learning pro-
vides guidance directly to the student, in the collaborative tutoring
system, the Solver relies on their partner, the Tutor, for tutoring
support. The Tutor is supported by the tutoring system in coaching
the Solver - the tutoring system does not support the Solver directly.
It provides guidance both with the mathematics and with how to
be an effective peer tutor. The Tutor can provide feedback through
the system interface (marking each step as correct or not) and can
provide hints or explanatory messages via chat. The student taking
the Tutor role can request hints from the system for any given
step, and need to evaluate the correctness of each step the Solver is
taking in order for them to move forward. The Solver and the Tutor
do not necessarily sit close to each other and can communicate
fully online. In the current design, students can only see their part-
ners’ alias usernames. Each collaborative assignment contains three
math equation-solving problems. Both systems support personal-
ized mastery learning, estimating students’ knowledge based on
their interaction with the system predicted by Bayesian Knowledge

Tracing (BKT) algorithm [14]. Both tutoring systems have a track
record of effectively supporting student learning [20, 33, 52].

The third component is a novel teacher-facing orchestration
tool named Pair-Up (Fig. 1 (b) and Fig. 4). Given that individual
and collaborative tutoring systems have been extensively used and
evaluated in studies [20, 33, 52], we focus description on Pair-Up,
a new co-orchestration tool. The core function of Pair-Up is to
support teachers in monitoring students’ progress and state (in
individual and collaborative learning mode), pair students to work
collaboratively, and unpair them to stop the collaboration.

The design of Pair-Up was undertaken iteratively in phases
with increasing fidelity, building on and informed directly by four
prior studies: 1) a Wizard of Oz technology probe in the class-
room on transitioning between individual and collaboration [18] 2)
surveying teachers’ preferences and boundaries in the human-AI
co-orchestration process [55], 3) data simulation of possible pairing
algorithms [56], 4) interview and co-design workshops with teach-
ers [? ]. From these studies, we have found that teachers prefer
system suggestions and have final control over pairing decisions
and that it is feasible to pair students based on their knowledge
level, (specifically, in-the-moment wheel-spinning status [9]) based
on historical log data from intelligent tutoring systems. We also
gained insight into the specific design features and layout choices
that teachers desire in a real-time orchestration tool.

Pair-Up, a web-based tool, displays students in card format (Fig.
4 , left panel). Pair-up displays students’ skills and progress, al-
lows teachers to choose whom to pair up and what collaborative
assignment they should work on (Fig. 4 , right panel). To support
teachers in monitoring students’ learning state, Pair-Up displays stu-
dents’ learning analytics in real-time, by means of indicators of their
recent learning status (Fig. 4, (a)), which have been co-designed
iteratively with teachers [? ]. As shown in Fig. 4, displaying the
learning status on a student card could alert teachers to students’
behaviors such as idling, misusing the software, making lots of er-
rors, making many attempts, and doing well. Pair-Up also displays
students’ progress in problems at hand, as well as their estimated
mastery of the knowledge components [2] that students are prac-
ticing. Teachers can sort the student cards in various ways, such as
alphabetically, based on the number of math problems solved, or
based on the status indicators (i.e., idle, misuse, lots of errors, many
attempts, doing well). The teacher is in charge of deciding whom
to team up with and when. The system design is commensurate
with design guidelines for human-AI systems [3], and is grounded
in prior findings from user-centered research with teachers [55].
The tool makes suggestions to teachers as to which student might
take on the role of Solver or Tutor, and highlights suggested Solvers
in teal and suggested Tutors in purple (Fig. 4). The teachers may
choose to follow the system’s pairing suggestions or override them,
and pair students based on their own judgment [18]. Informed by
prior results on data simulation of pairing algorithms and surveying
of teachers’ preferred pairing strategies [55, 56], the tool currently
has two built-in pairing suggestion algorithms: random pairing and
pairing students by different knowledge levels. The latter identifies
(as candidates for the Solver role) students who are making slow
progress on some of the knowledge components and suggests a
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Figure 2: Tutoring software that supports individual learning in algebra.

Figure 3: Tutoring software that supports peer tutoring in algebra.

partner (in the Tutor role) who can likely help them with the knowl-
edge components that they are struggling with, based on students’
real-time interaction learning data with systems.

4.1 Participants and Procedure of Classroom
Prototyping

We conducted a prototyping study in in-person classrooms in a
suburban public school in the U.S. Five middle school math teachers
(three males (T1, T4, T5) and two females (T2, T3)), and a total of
199 students from 11 classes voluntarily participated, including
five 8th-grade classes, five 7th-grade classes, and one 6th-grade
advanced class. The average class size is 19.5 (Min = 7, Max = 25).
T3 teaches 7th-grade special education with a smaller class size of 7
students, all of whom have an Individual Education Program (IEP).

Most have a specific learning disability and may be 1-2 grade levels
behind most 7th graders.

Each class participated for 2 class periods, resulting in a total of
22 study sessions. Each study session had a duration of 33-37 min-
utes, so that each student participated for a total of 70-75 minutes.
The first session of each class started with a 7-min tutorial video
that briefed the students about how to interact with the AI-based
tutoring systems. All students started out on their Chromebook
working with the individual tutoring system. A subset of the stu-
dents (assigned dynamically by their teacher) collaborated using
the collaborative tutoring system.

The teachers monitored and paired up students at any time
during the class session, using the orchestration tool Pair-Up (Fig.
4) either through a desktop computer (T1, T2, T5) or a tablet (T1,
T4). When pairing students, teachers were able to see students’
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Figure 4: Pair-Up, a teacher-facing co-orchestration tool for managing dynamic transitions. The panel on the left displays cards
that represent students working individually (upper part) and collaboratively (lower part). The top-right corner of each card
(marked “(a)”) shows an icon that represents a student’s real-time learning status, indicating whether the student is idling,
misusing the tutoring software, making many errors, making many attempts, or doing well. The panel on the right supports
the teaming up of students. It displays the skills and progress of a candidate for the Solver role and one for the Tutor role, both
selected by the teacher, to help the teacher assess whether these two students might make a good collaborative team. As well,
in this panel, the teacher can choose a collaborative assignment for paired-up students to work on.

data, including the skill bars and the number of problems finished.
In addition to the data provided via Pair-Up, teachers were also
walking around the room to keep an eye on students’ pace and
monitor their learning situation. The students who were paired up
often did not sit next to their partner and communicated with their
partner via chat, which was built into the web-based collaborative
tutoring system. When students who were paired up were done
with the collaborative assignment, or when they were unpaired
by the teacher, they switched back to individual work. After the
classroom sessions, all teachers participated in a one-on-one semi-
structured interview.

4.2 Data Collection and Analysis
To study the students’ learning processes (RQ1) and teachers’ class-
room orchestration processes (RQ2) during the dynamic transitions,
we analyzed the log data collected from the two tutoring systems
and Pair-Up, which consisted of a total of 19633 transactions. Met-
rics related to students’ learning process 1 include students’ error
rate, correct and incorrect attempts on each step, step duration,

hint request frequency, and students’ chat (in the collaborative tu-
toring system only). Metrics related to the teachers’ orchestration
process, include the pairing algorithms that teachers selected, the
students that the system suggested to pair up, and teachers’ pairing
actions. To study how teachers and students perceive the value of
dynamic transitions, as supported by the co-orchestration technol-
ogy ecosystem (RQ3), and what design opportunities they see to
better support such dynamic transitions (RQ4), we conducted and
analyzed teacher interviews and student surveys. We now describe
our data analysis methods.

4.2.1 Teacher Interview and Student Survey. The aim of the teacher
interviews was to understand whether teachers see value in dy-
namic transitions (RQ3) and what design opportunities teachers see
for future tools to better support such dynamic transitions (RQ4).
The interviews lasted on average 45 minutes. The researcher lead-
ing the interview asked teachers about 1) the pairing strategy they
used, 2) their experience with dynamic transitions and 3) how sup-
ported they felt while using the tool. The teacher interviews were
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Table 1: Relevant metrics on students learning from transaction data logged by intelligent tutoring systems

Measure Description
Error Rate The percentage of students that asked for a hint or were incorrect on their first attempt.

Assistance Score For a given opportunity, the number of incorrect attempts plus hint requests equals
the assistance score.

Number of Incorrects Total number of incorrect attempts by the student on the step
Number of hints Total number of hints requested by the student for the step.

Step Duration Step Duration is the total length of time spent on a step, calculated by adding
all of the durations for transactions that were attributed to a given step.

Correct Step Duration
The step duration if the first attempt for the step was correct. Correct Step Duration
might also be described as "reaction time" since it’s the duration of time from the
previous transaction or problem start event to the first correct attempt.

Error Step Duration The step duration if the first attempt for the step was an error (an incorrect
attempt or hint request).

video-recorded and transcribed verbatim. Based on the interview
transcripts of five teachers, two coders collaboratively conducted
iterative affinity diagramming [12] to surface common themes in
the interviews. To this end, they clustered the teachers’ statements
were iteratively into themes.

Additionally, the goal of our post-study student survey was to un-
derstand whether students see value in dynamic transitions (RQ3)
and study what design opportunities students see for future tools
to better support such dynamic transitions (RQ4). A total of 171
participating students filled out the survey. The survey questions
were adapted from a study by Lin et al. that evaluated students’
perceived enjoyment and effectiveness in learning [32]. The survey
contained seven five-point Likert scale questions about students’
enjoyment and perceived effectiveness in learning individually and
collaboratively (where 1 means “strongly disagree” and 5 “strongly
agree”) 5, two multiple choice questions on students’ preferred level
of agency in the pairing process, and three open-ended questions
about 1) how students liked the experience of switching between
individual and collaborative learning, and what they 2) liked or 3)
did not like about the experience. We analyzed students’ responses
to the multiple-choice questions by computing the percentage of
students who chose each option. We analyzed their responses to the
Likert scale questions by computing means and standard deviations.
To test if students’ perceived the effectiveness and enjoyment of in-
dividual and collaborative learning modes differently, we performed
paired t-tests on students’ responses to Likert scale questions. Two
coders coded students’ responses to the three open-ended ques-
tions through thematic analysis [11] to identify common themes in
students’ opinions.

4.2.2 Collaborative Learning Conversation Content. To understand
students’ learning processes resulting from the dynamic transitions
(RQ1) and to probe deeper into students’ collaborative learning
processes, we performed a manual content analysis of students’
conversations during the collaborative learning activities. In this
study, students communicated with each other via the chat win-
dow. Similar to Wang et al., who analyzed students’ chat data from
peer learning (cf. [37, 53]), we analyzed students’ conversations in
chat, logged by the collaborative tutoring software. We adopted

the coding scheme from Mawasi et al. [37] where they coded peer
help-giving behaviors in middle school math classrooms, with three
categories for student conversation: minimal contribution, facilita-
tive contribution and constructive contribution, under which we
developed 13 subcategories (2 and supplementary materials).

4.2.3 Analyzing Teachers’ Pairing Strategies. To understand teach-
ers’ orchestration processes and strategies for pairing up students
(RQ2), we extracted from log data the number of times teachers
paired and unpaired students, how frequently they used each pair-
ing algorithms, and whether they followed the system’s suggestions
for whom to team up. Additionally, we investigated whether stu-
dents who were assigned to different collaborative roles by their
teacher exhibited different patterns in their learning. Specifically,
we compared the learning curves (c.f. [13]) of students who were
assigned to take on different roles (Solver, Tutor, both, or neither).
One motivation behind this analysis is to confirm whether teachers’
actual pairing selection aligned with their intended pairing strat-
egy. Learning curves are auto-generated line graphs based on the
transaction data from students’ interaction with tutoring systems
in Datashop1. A learning curve depicts students’ performance over
successive opportunities to practice a specific learning objective.
Our analysis procedure contains the following steps:

• Step 1. Depending on the role teachers assigned to students
when they paired them up, we grouped students into four
categories: students who only served in the role of Tutor
(Tutor Only, N = 53), students who only had the role of Solver
(Solver Only, N = 61), students who had both roles, though at
different times (Both Solver and Tutor, N = 64), and students
who did not do any collaboration (No Collaboration, N = 20).

• Step 2.We created four data subsets, one for each of the four
categories defined in Step 1. We emphasize that these groups
were formed after the classroom sessions in the analysis pro-
cess based on teachers’ decisions. Thus, the groups are not
experimental conditions with randomly assigned students.

We inspected the learning curve for each group of students
(Solver, Tutor, both, and neither, defined above), and compared the

1A data analysis repository and analytics infrastructure for the learning sciences
community (https://pslcdatashop.web.cmu.edu/).

https://pslcdatashop.web.cmu.edu/
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Table 2: Coding scheme: for collaborative learning conversation content analysis

High level
categories Definition Sub-categories

Minimal
Contribution

Behavior that involves little to no domain content knowledge,
e.g., greeting, confirming partner’s identity, chatting or
conversation related to usability and features of the tutoring systems

- Confirm partner identity
- Minimal social behaviors
- System usability related conversation

Facilitative
Contribution

Behaviors that involve domain content knowledge, and
facilitate the collaboration by moving the conversation
forward, but are of limited help on building transferable
skills for the domain knowledge

- Conversation that is
generated by the tutoring software
- Solver request for answer
- Tutor give answers
- Solver ask for correctness feedback
- Tutor give correctness feedback
- Other transactive social behavior

Constructive
Contribution

A statement involving reasoning and explanation of content knowledge.
For example, answering a question with an explanation, correcting others
with explanation, or asking a specific clarification question to help partner
build transferable skills

- Solvers ask Tutors for
explanations / clarification
- Tutors ask the solver for explanation
- Tutors give explanations / clarification

following metrics for each group: Error Rate, Number of Incorrect
(Steps), Number of Hints, Step Duration, Correct Step Duration,
and Error Step Duration 1. Below we report where we find salient
differences in the learning curves of these groups (i.e., indicated
by one line of a group is consistently higher or lower than another
comparison group(s)).

5 RESULTS: STUDENTS’ LEARNING AND
TEACHERS’ ORCHESTRATION PROCESSES
DURING DYNAMIC TRANSITIONS (RQ1
AND RQ2)

In this section, we report students’ learning processes that occurred
as they switched back-and-forth between individual and collabo-
rative learning (RQ1), based on log data collected by the tutoring
systems and Pair-Up. Students solved on average 23.8 math prob-
lems while working individually and 1.7 problems while working
collaboratively. Students spent on average 39.8 minutes (76% of
total time) on individual problems and 12.0 minutes (24% of the
time) on collaborative problems 3. As shown in Table 3, during
the 22 class sessions, a total of 210 collaboration activities (defined
as two students teamed up to work collaboratively on one assign-
ment) happened, with an average of 18 activities in each class. This
considerable number of collaboration activities is an initial piece
of evidence that teachers were well-supported in orchestrating
dynamic transitions by the co-orchestration technology ecosystem.

5.1 Students’ Collaborative Learning Processes
(RQ1)

In this section, we report results on students’ observed learning
processes as they dynamically combined individual and collabora-
tive learning (RQ1), based on collaborative learning conversation
content analysis 4.2.2.

As mentioned, we analyzed the content of students’ chat dia-
logues using the coding scheme shown in 2 to see what kind of

conversational behavior students engaged in during their collab-
oration (4.2.2). Of all coded behaviors in collaborative learning
conversations, 43.1% were minimal contributions, 43.7% were fa-
cilitative contributions and 13.1% were constructive contributions.
Typical conversations are shown in 4. The standard deviation of
these code frequencies tended to be large, suggesting that different
student pairs exhibit different learning behaviors. The top subcate-
gories within each major category are: Confirming partner identity
(Minimal), transactive social behaviors (Facilitative) and Tutor gives
explanation/ clarification (Constructive). The results from this anal-
ysis (details in Fig. 5) show that students engaged mostly in minimal
conversational behaviors, such as building rapport or confirming
their partners’ identity, as well as in facilitative behavior, such
as giving answers directly to their partners without scaffolding.
They engaged less frequently in constructive behaviors that may
deal with conceptual knowledge and hold the potential to build
transferable mathematics skills.

5.2 Teachers’ Orchestration Processes and
Pairing Strategies (RQ2)

In this section, we report results on how teachers orchestrate the
dynamic transitions and on their strategies for pairing up students
(RQ2), based on results from the teacher interviews log data col-
lected from Pair-Up, and informal classroom observations (4.2.3).

From classroom observations, we found that two teachers (T2,
T3) teamed up all students at the same time, and three (T1, T4,
T5) paired students up at different times. From the interview data,
we ascertained that T3 (who taught special education students,
who usually have some kind of learning disability)thinks pairing
and unpairing everyone at the same time would make it easier for
her students to manage the transitions, and easier for herself to
manage the classroom since that way she does not need to give
instructions multiple times. Although we did not have a chance to
ask T2 why she paired up everyone at the same time, we speculate
that she prefers more synchronized classroommanagement because
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Table 3: Results from the analysis of log data collected by tutoring software and the orchestration tool (n =19633 rows)

Analysis Mean SD Min Max
Number of collaboration activities per class (over 2 class sessions) 18.0 8.5 6 37
Math problems solved individually per student 23.8 (93%) 17.2 0 70
Math problems solved collaboratively per student 1.7 (7%) 2.0 0 7
Time spent on individual problems per student (in min) 39.8 (76%) 14.5 0 80
Time spent on collaborative problem per student (in min) 12 (24%) 7.9 0 32.8
Number of unpairing actions by teacher per session 2.8 (22%) 2.5 0 10
Number of times teachers followed the pairing suggestions 6.4 (48%) 4.9 1 20

Figure 5: Coding results of students’ chat behaviors during collaborative learning.

Table 4: Representative examples of student conversation for minimal, facilitative, or constructive contribution (Students’
names are alias)

Minimal Facilitative Constructive

T: who are you
S: Ash who are you
T: Angela
S: OKay
T: soooo am i supposed
to like tell u what to do
S: yeah
T: Ok
T: oh wait no ur supposed
to tell me your steps and i
tell u if its right

S: hello blozo
T: Who are you
S: enzo
T: Wrong
S: why tho
T: You need a =
S: bruh how it wrong
T: Idk
T: type 2*x+2*-3+6=14
[Tutor gives answers]
T: put that as your answer..
thats what i was told
to tell you

S: it probably wrong
T: it is a negative number
T: would you like me to explain the steps of the problem?
S: yeah plz im confused
T: alright! just gimme a second
T: so first, you’d subtract the 5 from the 1 so everything
is on either side
[Tutor gives explanations]
T: let me know what you get when you subract 5 from 1
S: -4
T: okay, so you take that -4 and divide it by 4
T: what do you get when you divided -4 by 4?
[Tutor asks for explanation]
S: so it would be -1
T: yes :)
T: x=-1

she taught the largest number of classes (five sessions a day) and
students (104 in total).

It is interesting to ask what information teachers paid attention
to as they made decisions about pairing up students. One teacher
mentioned that they would read the room: “I mean, uh, some classes,
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like some of my periods, they don’t require a lot from me. Mm-hmm
they don’t need as much guidance or assistance or help. And so then I
would just kind of monitor and walk around and see, or watch on the
screen to see when I should pair or when it looks like they’re ready to
be paired or ready to switch roles” (T2). Another teacher mentioned
that they would look at students’ skill bar and progress on Pair-Up,
before checking the system’s pairing suggestions: “I was looking
for kids that were not doing so well. And just natural instinct right
away, I wanted to pair them with my dashboard somebody had their
bars up high. I would feel safer pairing when a student has someone
as a tutor that has more knowledge, at least on the bars there. Then I
started looking at the suggestions from the tutor itself” (T1).

We also looked at the degree to which teachers followed the
suggestions given by Pair-Up regarding which students to team
up. As mentioned, the Pair-Up tool gave pairing suggestions under
two pairing algorithms. Teachers could select the pairing algorithm
to use and had the final say over whether to follow, ignore, or
override these suggestions. Analysis of the log data from the Pair-
Up tool (Table 3) indicates that teachers followed the tool’s pairing
suggestions 6.4 times per class session, comprising 48% of their
total pairings. Teachers followed the suggestions of the Different
Knowledge Level algorithm (82%) more frequently than those of the
Random algorithm (18%). There was substantial variability among
teachers in the degree to which they followed the tool’s pairing
suggestions, ranging from 23% of all pairing decisions to 86%. Three
teachers (T1, T2, T3) found the system’s pairing suggestions to
be helpful “some of the suggestions were good suggestions, I think.”
(T2), and “I also liked the one that, um, [the system] gave the options
for who to pair up, like the suggestions, I like that.” (T3); while one
teacher (T4) preferred to manually pair up students, as he thought
he was more familiar with students’ situations and can pair students
in a more flexible and personalized way: “I didn’t really use any of
the pairing suggestions for that class. Just because I’ve been working
with them for quite a while so like I kind of already know the students.
I go more with just the manual because I take all that other stuff
into consideration too when I’m pairing them up. I like to kind of
leave it open and just kind of look and see who needs to be paired up
and who needs help with what, rather than worry about suggestions”
(T4). Teachers may reject the system’s suggestions, for example
when the suggested students do not get along (“The only one I was
considering changing was Tom and Roy (alias), just because of, again,
social interactions that they’ve had. They don’t get along” (T3)), or if
teachers want to see how different students interact: “Sometimes I
override it just to see how certain students would work together, to see
how these students would interact with each other” (T1).

Based on the teacher interviews, we found that teachers generally
wished to pair students who are doing well with those who are
not doing well (i.e., struggling). For example, teachers mentioned
that “I try to pair the students who were really good at a topic with
someone who maybe made some mistakes on that topic before, I use
the students who know farther ahead and obviously had already
mastered a lot of those topics and skills as the tutor” (T4) and “... if
you see somebody who, you know, has really got it and then somebody
who’s maybe struggling on the problems a little bit, then I pair them
up” (T3). Teachers also mentioned taking into account students’
interpersonal relationships: “A lot of them who are paired are friends.
They are more familiar with each other. They can be more direct in

their evaluation of what the kid is doing” (T5). Pairing up friends
may ensure they are comfortable working together and increase
interaction between collaboration partners. “Especially in a short
period of time. I know I just had two periods. If this is over the course
of a school year, I may mix them all up. I just knew I had limited time,
and I wanted to get as much interaction as I could. I’ve seen this where
there’s not much communication going on. It’s just two individuals
sitting beside each other sort of doing their own thing. You know, the
collaboration is good, but the kids have to buy into it.” Teachers also
said they take into account personalities and physical proximity
in class. These intended pairing criteria (as stated in interviews)
generally aligned with prior research [56].

As for the timing of when teachers paired up students and the
conditions under which they did so, some teachers (T3, T4) paired
up students based on their observation and monitoring of student’s
progress in the individual activities, and paired up students who
are continually struggling (“As students’ve progressed a little bit, I
basically look at how they’re progressing and if I see students continu-
ally struggling, then that’s where I would be, pairing them up” (T4)).
For the teachers who paired up students dynamically at different
times, they either saw the timing of pairing as something that can
be flexibly adapted to students’ unique situation (“But I pair them
up when I feel they need it. There is not a set time that I do it” (T5)),
or they viewed the timing as not critical (“I don’t see a bad time”
(T1)).

Based on the log data, we find that on average, teachers unpaired
students 2.8 times per session, representing 22% of all the pairs
they formed. In all other cases, the unpairing happened automat-
ically when the students finished their collaborative assignment.
(These assignments were relatively short, compared to the individ-
ual work.) As to the timing or conditions under which teachers
unpair students, the five teachers in the study had different prefer-
ences. Two teachers (T1, T4) liked to unpair students when their
knowledge level increases (“[I unpair students] whenever they have
started to start to show mastery of a new concept if they were paired
up for that reason” (T1)), when their “misconceptions are gone”, or
if they needed no additional help (“If I saw the student was able
to get through the first two questions with the help and they didn’t
need any additional help, then I wouldn’t pair them and let them go
back to individual” (T4)). One teacher (T5) said they would unpair
students based on how the collaborative activity is progressing, for
example when it becomes social time (“You hear the conversation,
and then the conversation is not focused on what they’re doing
anymore. And it just becomes, you know, then just chit chatting
then that’s when I know we gotta get away from this” (T5)). This
teacher also stated “... you can’t do it too much. because I think too
much collaboration, ... it turns into social time. It’s not productive,
there’s a fine line” (T5). Some teachers mentioned they did not want
to limit the collaboration to a fixed number of problems, or “haven’t
really thought honestly about what would be the appropriate time to
unpair them if we were doing something (learning activities) after”
(T4).

Regarding the question of whether teachers’ actual pairing deci-
sions aligned with their intended pairing strategy, the quantitative
analysis of the teachers’ pairing strategies (4.2.3) produces three
relevant findings:



Pair-Up: Human-AI Co-orchestration of Dynamic Transitions CHI ’23, April 23–28, 2023, Hamburg, Germany

1) The No Collaboration group performed worse than the
other groups in their individual work. Students who were not
selected by their teacher for collaborative assignments (i.e., the No
Collaboration group, who only worked individually) were worse
than the other groups on all metrics (see Table 2): They made more
mistakes (in their work on the individual tutoring system) than
the students in the other groups, all of whom were at one point or
another involved in collaboration (Fig. 6, left; the No Collaboration
group has the highest error rate across learning opportunities).
We also found from the learning curve that the No Collaboration
students spent more time per step than the other three groups on
both correct and incorrect steps.

We conducted statistical tests comparing the error rate of the
No Collaboration group with the other groups. The error rate of
the No Collaboration group was significantly different from that of
the three groups combined (M = 0.23 vs. 0.15, SD = 0.18 vs. 0.16),
t(194) = 2.06, p = 0.02. Similarly, we conducted a t-test which shows
that the No Collaboration group spent significantly more time in
steps in individual work (in seconds) than the other three groups
(M = 34.26 vs. 22.78, SD = 20.06 vs. 28.57), t(194)=1.69, p = 0.04).

This evidence suggests that the students who were left to work
individually by their teachers could use help from an instructor or
from peers. It may indicate that there is room for improvement in
the co-orchestration process in that it could better help teachers to
identify students who might benefit from being paired up. While we
cannot know the specific rationale teachers have for leaving the No
Collaboration student without collaboration, we can infer, from the
interviews, three factors that may have played a role: 1) student
behavioral: the teacher expects that certain students might not
work well with others, 2) student preference: the teacher thinks
the certain students might prefer learning by themselves, (e.g., “Um,
I have a few, I have some students that do not work well with other
students and want work on their own and [I like] just having that
opportunity for them to work on the solo assignment.” (T2)) or 3)
the teacher has helped them individually (e.g., “[I would]First
provide individual help, then the pairing serves as the additional help”
(T4)).

2) Tutors Only performed somewhat better than Solvers
Only. Students who on one or more occasions were selected to take
on the role of Tutor but were never selected for the role of Solver
(i.e., the Tutor Only group) had better performance on the individual
learning activities than those who, in their collabotative activites,
only had the role of Solver. The learning curves derived from the log
data from the tutoring system suggest that the Tutor Only group had
a lower error rate than the Solver Only group (Fig. 6, right). There
were no obvious visual differences in the learning curve on step
duration for the Tutor Only and Solver Only groups. Neither the
difference between the Tutor Only group and the Solver Only group
in error rate (M = 35.61 vs. 22.65, SD = 20.06 vs. 28.57), t(110)=0.23,
p = 0.41), nor that in step duration (M = 27.73 vs. 22.5, SD = 28.80 vs.
40.45), t(110) =0.80, p = 0.21) was statistically significant, however.
Thus, although there was some evidence that teachers preferred
(and were able to select) higher-performing students in the role
of Tutors, though the performance difference between students
selected to only be Tutors vs. those selected to only be Solvers
was not statistically significant. They may view these students as
more capable of helping students with weaker learning or slower

progress. This finding aligns with most teachers’ intended pairing
strategy as stated during the interviews (i.e., to pair those who learn
well with those who are learning less effectively), as well with the
most common strategy teachers generally adopted as found in prior
research [55, 56].

6 RESULTS: TEACHERS’ AND STUDENTS’
PERCEIVED VALUE AND DESIGN
OPPORTUNITIES (RQ3 AND RQ4)

This section reports results regarding teachers’ and students’ per-
ceived value of dynamic transitions (RQ3), as well as the opportuni-
ties for future tool design expressed by them (RQ4), based on data
from the teacher interviews and student surveys.

6.1 Teachers’ Perceived Value of Dynamic
Transitions (RQ3)

In this section, we report interview results on teachers’ experience
with and the value they perceived in dynamic transitions (RQ3).
All five teachers (including the special education teacher) reported
being likely to use technology such as the Pair-Up ecosystem in
their regular classrooms.

When asked during the interviews, the teachers generally saw
pedagogical value in dynamically combining individual and collab-
orative learning activities. As one teacher expressed: “I definitely
like it (the dynamic transitions) because it lets you differentiate the
learning a little bit better because some kids don’t need to be paired
up” (T4), and “I do like that aspect of having it where you can pair
up some or have some work individually, and you can mix it up as
needed” (T4). One teacher liked that this self-paced learning can
help distribute resources, support peer learning, and allow students
in a class to catch up: “You got to separate the kids, kids who all
understand everything, some students in the middle. Got to use those
who get it very quick to try to help the others” (T5). Another teacher
(T2) thought it was useful “to let students who do not work well
with other students and want to work on their own just having the
opportunity to work on solo assignments”. She also stated that dy-
namic transitions are useful for students who are “at home due
to COVID for an extended period of time, and might not be logging
on at the same time” (T2). However, the special education teacher
(T3) had some reservations about dynamic transitions for her class.
Although she thought her students liked a mix of different activities
and “enjoyed (switching) back and forth instead of just doing the same
thing the same way”, she viewed dynamic transitions as useful only
“for students who can handle the transitions”. She was concerned
that some of her students with learning disabilities may find the
transitions back and forth between different types of activities to
be difficult. She still found the dynamic transitions worthwhile and
mentioned that “students learn better when they switch (between
learning modes), so I think the pros outweigh the cons” (T3). One
teacher thought that switching back and forth too frequently may
hinder students’ learning as they may get distracted by who their
partners are (T5). Teachers also think that more advanced classes
may manage dynamic transitions better. For example, one teacher
(T4) selected, for participation in the study, a class he deemed to be
more advanced than the other classes, as he thought the students
with less experience with equation solving would struggle with
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Figure 6: Comparing learning curves that show error rates between: The No Collaboration group and the other three groups
(left); and the Solver Only and Tutor Only groups (right); The X-axis shows the opportunity count, which captures the number
of practice opportunities students had with a given knowledge component in the domain content.

the math content knowledge and might not have the headroom
to simultaneously take on the challenge of navigating smoothly
between the two tutoring systems.

As for teachers’ perceived classroommanagement load compared
to the regular load, the two teachers who used the orchestration
tool on tablet computers mentioned it was easier or similar to their
regular classes. One teacher (T4) expressed that it was easier be-
cause he can multitask (walking around the classroomwhile pairing
students), which saves them time so they have more time to help
individual students. “Because it was easier to work with more students
and see what they were doing and I can do a quick pair up instead
of maybe taking five minutes like I would have to normal class to
help certain students”. This teacher thought it would be harder if
he had to use a static device such as a desktop computer “I think it
enhances that if it’s mobile. I think it would totally take (me) away
from the classroom management if I have to sit at the desk” (T4). The
special education teacher (who used a desktop computer) described
it was harder to manage the classroom.

Overall, teachers mentioned they liked the experience, for four
main reasons: 1) it allows for self-paced learning that is personalized
to students’ learning progress and preferences, 2) it allows teachers
who use the orchestration tool on the mobile device to multitask
(e.g., pairing, monitoring and helping students), 3) it provides a
different way of teaching compared with their regular lecturing,
4) the software provides support for peer tutoring, in addition to
support for math learning.

6.2 Students’ Perceived Value of Dynamic
Transitions (RQ3)

In this section, we report quantitative and qualitative survey results
on students’ experience with and the value they perceived in dy-
namic transitions (RQ3). In their responses to the five-point Likert
Scale questions in the students’ survey (Table 5), over half of the 171
students who responded rated a mix of individual and collaborative
learning as helpful for their math learning (54%). 30% were neutral
and 16% of students disagreed to a greater or lesser degree (M=3.3
out of 5, SD=1.05). Students reported higher enjoyment in individ-
ual learning than in collaborative learning and the difference was
statistically significant (M=3.5 v.s. 3.3, SD = 1.16 vs. 1.23, t(169) =
2.18, p=0.03). 60% of students liked working individually using the
online math tutor, and 49% of students liked working collabora-
tively (chose “like somewhat” or “like a great deal”). Students also

perceived individual learning to be more effective, although the
difference was not statistically significant (M=2.9 v.s. 2.7, SD=0.99
v.s. 1.06), t(169) =1.36, p=0.08. More students preferred working
individually all the time than working collaboratively all the time
(M=2.8 v.s. 2.6, SD=1.27 v.s. 1.23). This difference was statistically
significant t(169) = 2.06, p = 0.04.

The three optional open-ended questions, which asked (1) how
students liked the experience of switching between individual and
collaborative learning, and what they 2) liked or 3) did not like
about the experience), respectively yielded 48, 50, and 47 students’
responses. Based on these responses, we found that 39% of stu-
dents liked switching between individual and collaborative learning
(N=19). Reasons that students liked dynamically combining individ-
ual and collaborative learning include “It was helpful so you could do
things on your own but also be able to have someone to be partnered
with,” or “It was very cool and different from other sites like this”.
31% of students rated the experience as neutral (N=15), and 25%
reported not liking it (N=12). Analyzing why these 12 students did
not like the switching between activities, it turned out to be mainly
because they preferred a single learning mode (N=7), e.g., “I don’t
like the switch because I was doing good on my own”. While most
students are fine with switching to a collaborative activity while
solving a problem individually, a minority of students reported not
liking the unanticipated switching (N=2) e.g., “It was fine, a little
annoying at times because I would be in the middle of a question (and
I had to leave it)”, indicating design opportunities for the transitions
to happen in a smoother and less intrusive way.

Students enjoyed collaborative learningwith dynamic transitions
to different degrees. Asked what they enjoyed about the study
experience, among the 50 students’ responses, 40% of students
(N=20) reported that they enjoyed collaborative learning and having
a partner to work with, and that they liked “working with random
people from across the room” or “working with a friend”. Only 6%
expressed that the thing they enjoy is working alone (N=3). When
asked to state one thing they did not like about the experience,
among the 47 responses, 30% of students mentioned some aspects
of the collaborative learning experience they did not enjoy (N=14).
The main complaints students have about the collaborative learning
experience include their partner taking too long to answer or not
doing the work (N=5), students not liking their assigned Tutor
(N=4), or not being able to pick their partners (N=4).
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Table 5: Survey responses from 171 students on experience of dynamic transitions

Survey Items (Self-report by students in five-point Likert Scale) M SD
How much did you like working individually using the online math tutor? 3.5 1.16
How effective did you learn math knowledge through individually using the online math tutor? 2.9 0.99
Would you prefer to work individually all the time? 2.8 1.27
How much did you like working collaboratively using the online math tutor? 3.3 1.24
How effective did you learn math knowledge through collaboratively using the online math tutor? 2.7 1.06
Would you prefer to work collaboratively all the time? 2.6 1.23
Do you think a mix of individual and collaborative learning is helpful for your math learning? 3.5 1.04

6.3 Design Opportunities for Future Tools
Grounded in Data (RQ4)

In this section, we report design opportunities for future orches-
tration tool design (RQ4), based on results from both the student
surveys and the teacher interviews.

6.3.1 Students’ Opinions on Student Control and Agency in the
Dynamic Transitions. The survey results indicate that many stu-
dents prefer to know in advance when and with whom they will
get paired. Only 14% of students reported they are okay with not
knowing this information. 37% of the students said they would like
to know both when and with whom they will be paired. Students
cared slightly more about with whom they are paired (27%) than
exactly when they will be paired (22%). In addition, the majority
of the students (59%) wished they could have chosen their partner,
with 33% reporting “Maybe”, and 8% reporting “No”. These find-
ings suggest that co-orchestration tools for transitioning between
learning activities may need to support greater awareness on the
part of students. They may also need to grant learners some degree
of agency regarding the choice of their partner and the timing of
transitions.

6.3.2 Teachers’ Opinions on Student Control and Agency in the Dy-
namic Transitions. One teacher mentioned he would like to give
students some control over when to collaborate, but not full control
as some students “will just mess around” (T1). Most teachers pre-
ferred that students not know who their partner is (N=3). Results
from affinity diagramming reveal that teachers thought anonymous
pairing may 1) avoid some social issues (e.g., students do not get
along with their partner), 2) avoid some hard-to-control student
behaviors that make classroom management harder (e.g., shouting
across the room), 3) prevent students from off-topic chatting, 4)
protect students’ privacy, and 5) in the special education class, pre-
vent students from making fun of smart students and teasing them
about being the “Tutor”. One teacher, however, acknowledged that
it is hard to prevent students from knowing their partners’ identity.
(Students could reveal their identify in the chat.)

6.3.3 Teachers’ General Design Feedback. Teachers made several
suggestions for improving the tool. 1) Currently, the tool suggests
several possible partners for any given Solver. Two teachers ex-
pressed a preference for even more efficient pairing, with the tool
automatically pairing up students and the teacher only having to
review and confirm these pairings. 2) Currently, the roles of Solver
and Tutor are fixed for any collaborative activity. One teacher in-
stead desired a simple way to have students do reciprocal peer

tutoring, to experience being both a Solver and a Tutor. (Indeed,
the first version of the collaborative tutoring system was meant to
support such reciprocal peer tutoring [52].) 3) Currently, the sys-
tem assigned students to a new collaborative problem when they
are paired. One teacher strongly preferred to just pair students to
work collaboratively on the problem they were initially working on
(struggling) individually because it would be more effective to help
struggling students who may just need “a little additional nudge or
help” to get unstuck.

Two teachers (T1, T4) wanted to be able to see detailed deep-dive
information about individual students (e.g., [20]) so that they could
provide personalized help and pair students in a more customized
way. One of these teachers suggested that the system would suggest
collaborative activities for given students based on their misconcep-
tions. The special education teacher made slightly different sugges-
tions than the other teachers. In her eyes, her students may easily
lose focus and are very “reward-motivated.” Thus, she suggested
adding visual or audio rewards (e.g., a “Ding” sound) when they did
something right to keep them engaged, and make the transitioning
between activities as smooth as possible. She would also appreciate
more guidance on when to pair or unpair students.

7 DISCUSSION
In this work, we developed and prototyped a novel co-orchestration
technology ecosystem that focuses on supporting dynamic tran-
sitions between individual and collaborative learning. Dynamic
transitions go beyond the pre-planned, whole-class strategies that
are common in classrooms; the term refers to students’ transition-
ing between individual and collaborative learning, in a flexible,
personalized, self-paced way. It is not an easy task for teachers to
manage such dynamic transitions, especially when they need to at-
tend simultaneously to other management tasks. This prototyping
study was designed to test the feasibility of dynamically combining
individual and collaborative learning, as well as the desirability,
in the eyes of teachers and students. We also wanted to get an
impression of the resulting classroom dynamics. In this section, we
discuss the main answers to the four research questions. We also
consider design implications, ethical implications, limitations, and
future work.
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7.1 Learning and Orchestration Process of
Dynamic Transitions, and New Classroom
Dynamics

We found students in collaborative activities engaged mostly in
minimal conversational behaviors, such as building rapport or con-
firming their partners’ identity, as well as in facilitative behaviors,
such as giving answers directly to their partners without scaffold-
ing. They engaged less frequently in constructive behaviors that
may deal with conceptual knowledge and hold the potential to build
transferable mathematics skills (RQ1). We found some evidence
that teachers preferred and were able to identify higher-performing
students in the role of Tutors, so they could, in the teachers’ eyes,
facilitate their partner’s learning. However, we also found that stu-
dents who only worked individually (i.e., who were not assigned
to collaborative learning by their teacher) performed worse than
those who on one or more occasions were assigned to collaborate
(RQ2). Potential reasons that teachers did not select students for
collaborative learning activities include behavioral reasons (certain
students might not work well with others), student preference (the
teacher thinks the students might prefer learning by themselves) or
that teacher would like to help them individually. Still, it is possible
that teachers overlooked some students who might have benefited
from peer tutoring. Assuming peer tutoring can be an effective way
to help get students unstuck, leaving students in individual mode
may risk prolonging or exacerbating their struggle, especially if
teacher help is not available or adequate. Thus it may be fruitful for
future orchestration tools to support teachers even more effectively
in identifying students who need to be paired up.

With this initial exploration of dynamic transitions in the class-
room, new classroom dynamics arose. Firstly, the students switched
dynamically between (AI-supported) individual learning and (AI-
supported) collaborative learning. Secondly, teachers were able to
successfully orchestrate this complex process while multitasking.
They walked around the classroom to keep an eye on individual stu-
dents while monitoring the progress of all students. They quickly
paired students up using the orchestration tool, sometimes accept-
ing the tool’s suggestions for whom to team up, at other times
substituting other choices. Designing orchestration tools that allow
teachers to multitask has been explored in past research (c.f. [27]). It
is an exciting venue for design exploration for future tools, as it fits
the practical needs in teachers’ classroom practice [5, 22]. Thirdly,
teachers expressed that dynamic transitions could be helpful given
COVID-19 constraints. As students may join remotely or log in at
different times, it allows them to be paired up and collaborate more
flexibly without prolonging the waiting time for partners.

Overall, the prototyping study provides evidence that, with ap-
propriate technical support, dynamic combinations of individual
and collaborative learning are feasible – the orchestration is man-
ageable, and teachers appear to be content with the teams they
form, which tended to align with their stated preference to as-
sign higher-performing to the role of Tutor. Students were able to
switch between the two tutoring systems without great problems
– even if there were some relatively minor complaints regarding
the suddenness of transitions and less agency over the choice of
partners.

7.2 Experiences with and Perceived Value of
Dynamic Transitions

For RQ3, we found students’ perception of dynamic transitions can
be affected by their collaborative learning experience. A consid-
erable number of students report certain aspects of collaborative
learning (usually concerning the partner they are paired with), to
be the one thing they particularly like (40%) or dislike (30%) during
the entire study experience. This finding indicates that collabora-
tion can be a polarizing experience. Students perceptions may be
inseparably tied to, and greatly reflect their perceived enjoyment
and effectiveness of working with a particular partner, instead of
collaborative learning activities itself. This finding may also explain
why students desire more agency in the pairing process (i.e., know-
ing when and with whom they are paired, and choosing their own
partner).

From teachers’ perspective, we found initial evidence that teach-
ers felt well supported by the Pair-Up tool in orchestrating dynamic
transitions. As well, they liked being able to monitor students and
pair them up based on their progress in individual activities. Teach-
ers reported a positive view towards dynamic transitions and ex-
pressed they were likely to use the technology in their regular
teaching in the future, as it allows for more differentiated learning
and it helps ensure that students receive help in moments of strug-
gle. Nevertheless, our findings also turned up some concerns from
special education teachers or teachers of weaker classes, namely,
that students with weaker domain knowledge or learning disabili-
ties may not handle switching between activities well.

Most teachers (four out of five) suggested that the classroom
management load when using the technology ecosystem is similar
to or less than that in their regular practice. In general, teachers
were receptive to the idea of dynamic transitions and recognized
the pedagogical value of dynamically transitioning students from
individual to collaborative learning and back. This finding confirms
results from a prior co-design study [? ]. Over half of the students
thought a mix of individual and collaborative learning is helpful
for their math learning.

While it was not the primary focus of this study to evaluate
which type of device affects the orchestration load of dynamic tran-
sitions, teachers perceived that a mobile device (e.g., a tablet) yields
a lower orchestration load compared to a static device (e.g., desktop)
when orchestrating dynamic transitions, as it allows them to mul-
titask in their usual practice. Prior research in the HCI and AIED
communities has demonstrated that mobile, portable or wearable
devices in classrooms hold great potential to support more efficient
teaching practices and classroom orchestration (c.f. Keeping watch
[44], ClassBeacon [4], Lumilo [21] and others [5, 10, 40]), which
this work provides additional evidence for.

7.3 Design Implications and Challenge
For RQ4, in addition to the specific suggestions pointed out by
teachers and students in surveys and interviews, we provide the fol-
lowing design implications based on study findings, intended for the
HCI and educational research communities, especially researchers
building human-in-the-loop technologies to support teaching and
learning.
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Firstly, future tools for supporting chat-based collaboration ac-
tivities (whether dynammically combined with other activities or
not) should focus on cultivating positive and constructive collab-
oration behavior (which involves reasoning and explanation of
content knowledge and may help build transferable skills). Con-
structive contributions in collaborative dialogues, such as reasoning
or explanation in terms of conceptual knowledge, can often sup-
port students in building transferable skills [37? ]. In the current
study, constructive contributions were rare in students’ dialogues,
however. Scaffolding students in better peer tutoring, so that they
engage in more constructive behaviors such as explaining and clar-
ifying conceptual knowledge, may lead to more productive collabo-
rative learning experiences. In this kind of short-term collaboration
activity, it can also be important to ensure that the students are
responsive to their partners. One effective way of nudging students
to engage in timely interactions may be for the system to display
a timer countdown notification when one party is idle for a long
time.

Secondly, teachers would like to be given analytics about stu-
dent work that more directly inform them of the optimal timing
of pairing and unpairing actions. While students are working indi-
vidually, teachers desire more deep-dive information on students’
misconceptions and current problems to help them make more
informed pairing decisions. In collaboration, given the consider-
able differences in students’ experiences and the large variance in
their collaborative learning quality, it is important to help teachers
monitor the progress in and quality of students’ collaborative ac-
tivities, so as to optimize the learning experience and outcome for
students. The design of collaborative learning analytics can draw
from prior work on positive indications of collaboration including
sharing resources, joint actions, mutual planning, equal participa-
tion, communication and reaching consensus [27]. Additionally,
one (system-generated) analytic that might guide teachers decide
when to unpair students is whether students have improved sub-
stantially on the knowledge skills for which they were paired up
initially. Similarly, it would be useful if the system could detect
when students’ misconceptions had been resolved.

Thirdly, tools for dynamic transitions may need to be customiz-
able and support teachers’ varied preferences depending on their goals
for pairing. Educational technology works best when aligned with
teachers’ values, instructional goals, and teaching practices [23, 28].
Echoing the technology probe study by Echeverria et al., who found
that the design of dynamic transitions may need to be adaptable
for different classroom contexts (e.g., teacher’s preference and stu-
dents’ prior knowledge) [18], the current study uncovered that the
tool design may need to be adaptable to the goals, purposes, and
values teachers hold for initiating collaboration between their stu-
dents. For example, teachers whose goal for pairing students is to
have reciprocal peer-tutoring prefer a role-switching feature, so stu-
dents can switch between the roles of Tutor and Solver. In contrast,
teachers whose goal for pairing is to help struggling students get
unstuck wished for a feature that allows struggling students to con-
tinue working on the problems they were stuck on when they get
teamed up with a partner, instead of getting new problems. Some
other teachers, who teach large classes may prefer a more efficient
and automated way of forming pairs. They may be more willing

to give up some degree of agency and control in the human-AI
co-orchestration process in exchange for greater efficiency [3].

Our study also reveals a design challenge: we observed a tension
between teachers’ and students’ preferred level of control over the
transition process. Previous studies in human-AI co-orchestration
found that teachers prefer to have the final say in the pairing pro-
cess [18, 55]. However, in our study, we found that students would
also like to have control over when and with whom they will be
paired. It is an interesting design challenge to creatively incorpo-
rate more student agency without threatening teachers’ authority
and preferred control of the classroom. As Holstein and Olsen
pointed out, sharing the orchestration responsibilities between in-
structors and learners may be beneficial, but may also risk creating
a greater load for the instructor [25]. Still, it is an emerging vi-
sion for co-orchestration systems to combine instructor-AI and
instructor-learner co-orchestration [25]. Features that may help
address this challenge include a student-informed list of preferred
and blocked partners, as well as allowing students to request a
different partner or to request that the collaboration is halted when
it is of poor quality. Additionally, when deciding the proper partner,
timing, and content for a collaborating pair, one potential way to
incorporate both teachers’ and students’ agency and control can be
to have one party propose ideas and to let the other party makes the
final decision (e.g., teachers propose content for the collaborative
activity and students choose, or student propose several possible
partners and teachers select one). Another general approach is to
co-design with teachers and students to generate design ideas that
might balance their preferred level of control in the classroom.

7.4 Ethical Implications
With the adoption of tools that support dynamic transitions can
come ethical implications, as revealed in the current study. Firstly,
dynamic transitions, which inherently require students to switch be-
tween different learning activities, may pose additional challenges
for students with learning disabilities, as revealed in this study.
Since these students may have impaired attention spans [8, 50], and
may have difficulty focusing on and staying engaged in one learn-
ing activity, switching between different ones may compromise
their learning effectiveness. Secondly, as compared to traditional
group formation which usually involves the whole class so that
every student is part of a group, the nature of dynamic transitions
encourages instructors to only pair students for whom they deem
collaboration to be beneficial. While teachers express that they of-
tentimes let students who in their judgment do not need help work
by themselves, it is possible that their judgments are not always
accurate and/or up-to-date. This is evidenced in our analysis, which
found that students left in individual mode have lower performance
than other groups. Given dynamic transitions as supported in this
current technology ecosystem rely quite heavily on teachers’ sub-
jective judgment, dynamic transitions may risk keeping struggling
students in individual learning states. Thus, given that peer tutoring
holds the potential to scaffold students, keeping them in individual
learning activities may unnecessarily prolong their struggle, with-
out careful design such as support to help teachers spot struggling
students or allow students more control in the process [18, 25, 46].
Thirdly, given that teachers may be inclined to pair students who
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they know would work well with their peers, one potential risk
of dynamic transitions is that it will not provide a fair and equal
opportunity for collaboration, for students whom teachers consider
to “have social behaviors issues” or to “not work well with others”.
Future tools for supporting dynamic transitions should take these
ethical implications into consideration.

7.5 Limitation and Future Directions
One limitation of the current study is it only evaluates dynamic
transitions in the math algebra context for students using online
intelligent tutoring systems, so the new insights it provides may
be domain-specific. We do not claim that the tools used in the cur-
rent study are comprehensive (e.g., they do not provide for (partial)
student control), as we are still honing the technology ecosystem.
Future work can explore how to balance teachers’ and students’
preferred levels of control in the co-orchestration process. Addi-
tionally, this prototyping study was not designed to test whether
dynamic combinations of individual and collaboration lead to bet-
ter experiences or outcomes for students or teachers, compared to
effective alternative forms of instruction. With a classroom tech-
nology ecosystem of high complexity, it is appropriate to first do
prototyping studies to test feasibility and desirability, as we did in
the current study. Evaluating whether dynamic combinations of
individual and collaborative learning have better outcomes than
other forms of instruction is an interesting and important open
question for future research.

8 CONCLUSION
We conducted a classroom prototyping study of a human-AI co-
orchestration technology ecosystem, to get a sense for whether
dynamically combining individual and collaborative learning can
be feasible and helpful. The study shows that dynamic transitions
between different activities have pedagogical value in the eyes of
teachers and, to a lesser degree, of students. Teachers view dynamic
transitions as a way to achieve differentiated learning that can be
customized to each student’s individual pace and preferred learn-
ing mode. Supporting dynamic transitions in actual classrooms is
worthwhile from a pedagogical perspective, yet not without chal-
lenges such as finding the optimal timing, content, and partner for
transitions to collaborative learning. The challenge may lie in 1)
supporting teachers in identifying opportune moments and suit-
able partners, without overloading them in classroom management,
2) ensuring students are responsible, responsive, and contribute
in a constructive way during collaboration, 3) allowing smooth,
non-disruptive transitions that switch students to different learning
activities in moments that they may be most helpful, without col-
laborative activities turning into unproductive social or idle time.
The current prototyping study builds a case that with Pair-Up and
the two AI-based tutoring systems that support individual and
collaborative learning, dynamic combinations of individual and
collaborative learning are feasible in classrooms. The study also
highlights a number of ways in which the design of the technology
ecosystem could be improved.

The current study is the first prototyping study in authentic
classrooms on dynamic transitions as supported by a human-AI
co-orchestration technology ecosystem. The findings, insights, and

design implications in this study are not limited to the specific de-
sign case of Pair-Up or the co-orchestration technology ecosystem.
It may generalize to other educational systems that uses complemen-
tary strength of human and AI systems, and collaborative learning
systems where students communicate via chat. A secondary goal
of our study is to spur more work at the intersection of HCI and
education that adopts the lens of human-AI co-orchestration. We
believe there are many possibilities to embody the insights from the
classroom study and the design implications in future tools that sup-
port classroom learning and teaching, and leverage complementary
strengths of human and AI systems synergistically.
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